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Abstract. Long-wavelength optical modes of lattice vibrations are studied and a Frohlich-
like Hamiltonian of the interaction between an electron and the interface optical phonons
is derived. Interesting properties of the interface optical modes and their coupling with
electrons are found. The numerical results for the dispersion relations, eigenvectors
and coupling functions of the interface optical phonons in several practical systems
are obtained and discussed. It is shown that the interface optical modes should be
taken into consideration in theoretical investigations of electron-phonon scattering in
heterostructures.

1. Introduction

In recent years, much attention has been paid to the electron-optical-phonon
interaction in semiconductor heterostructures [1-13]. Raman scattering measurements
for semiconductor quantum wells have shown that a transverse vibration occurs at
the bulk longitudinal optical (LO} frequency, while a longitudinal mode occurs at
the bulk transverse optical (TO) frequency [2]. The polaron effects at frequencies
lower than the usual LO frequencies are found by cyclotron resonance (CR) and
magnetophonon resonance (MR) observations [3-5]. These phenomena are somewhat
surprising and various theoretical explanations have been proposed [2,6-9]. An
interface-mode mechanism has been suggested [4,7,8]. Some authors have studied
theoretically the properties of the electron—optical-phonon interaction in polar
semiconductor heterostructures such as the single heterojunction and symmetric
double heterostructures {11-13]. It is shown that the optical vibration modes can
be strongly influenced by the presence of hetervinterfaces; these give rise to the
appearance of new modes which are localized in the vicinities of interfaces and can
be called interface optical (10) modes. A detailed study of 10 phonons and their
coupling with electrons in various systems of heterostructures is necessary.

In this paper a general situation, the asymmetric quantum well, is considered.
The optical modes of lattice vibrations are first determined within the framework of
the dielectric continuum mode] [13-16] and then an implied dispersion relation and
the eigenvectors for the 10 modes are given in section 2. A Frohlich-like Hamiltonian
describing the electron-I0-phonon interaction in the system is derived in section 3.
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The properties of these modes and corresponding electron-phonon coupling are
qualitatively analysed in section 4. In some special cases our results can be reduced
to those for symmetric double heterostructures [11,13], the single heterojunction [12]
and an isolated slab [17] etc. Numerical calculations for several practical systems are
carricd out and discussed in section 5. It turns out that the effects of interface modes
may contribute to electron-phonon scattering in heterostructures.

2. Interface optical modes

We consider a system whose geometry is shown in figure 1. The well material 1 lies in
the region I (|z| < d) and the barrier materials 2 and 3 fill up the spaces Il (= > d)
and Il (z < —d) respectively. A similar system has been considered in studying
the surface polaritons, the modes of coupled photons and dipole excitations of the
solid [10]. We now start from a microscopic consideration of the optical vibrations
of lattices in order to deal with the electron-phonon interaction problem. In the
dielectric continuum model, the relative displacement u(r, t) of the ion pair at r in
a diatomic polar crystal satisfies the following equation of motion:

wit(r, 1) = —pwiu(r,t) + " E'(r, 1) (1)

where 4 is the reduced mass of the ion pairs, w, i the frequency associated with the
short-range force between the ions and e* is the effective charge of the ions. El(r,t)
is the local electric field related to the polarization field P(r,t) by

P{r,t) = ne*u(r,t) + naE\(r,t) 2)

where n and « are respectively the number of Wigner—Seitz cells per unit volume
and the electric polarizability per cell. On the bases of dipolar-field and Lorentz
local-field theories, we have the following integral equations for the polarization field
in the region A [13, 16, 17]:

YA P, t)_Z[ T, (r — ') B (', 8) dr. 3
AN

In equation (3) A, = I, II or III label the regions and {,j = z,y or 2. The
integral is over the region \'. T;; is the dipolar tensor [16,17]. ‘yJ is determined by

yooon o Wi —w(1 - frnyay) —wpy /3 4)
Yo =Ty =T = nAaA(wgk_wZ)_!_szMMﬂ
v = i+ ()
Carrying out a two-dimensional (2D) Fourier transformation one can obtain {13]
v} Pk, z) = _-—):f d' 3" K Ke H IR (kL) (6)
Al
I

where

K = (k,0,iksgn(z — 2')). N
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k is the 20 wavenumber in the = — y plane. Here the x-axis has been chosen to lie

along k. The coefficient v can also be related to the macroscopic parameters of the
materials by the equation

i =4n/(ey — 1) (8)

which is implied in the derivation from equations (2) to (3). Here the dielectric
constant €, is a function of the frequency and is given by

ey{w) = €oo)q(w]2.)\ - wz)/(w'zr,\ - w?')- (%)

In equation (9), €, and wyp,{wr,) are respectively the optical dielectric constant
and the bulk LO- (TO-) phonon frequency of the material A(X = 1,2,3).

maferfal 3: materisl 1 :materlal 2
(1 D (D Figure 1. Geometry of the system.

Equations (6) and (7) can be discussed for the situations in which —y} is equal to
zero or otherwise. For the cases of 4} = 0 and v} = 0, we get confined bulk-like
modes, TO and 1LO modes of the material A, respectively. These are simply the results
obtained by previous authors [15-17] for a dielectric slab. We do not plan to discuss
them here.

We focus our attention on the case of -yj" # 0. In this case we get extra modes,
In solving equations (6} and (7), the convergence of the solutions at z — too is
applied and the boundary conditions at the interfaces are ‘buried’ in the system of
integral equations which couple the different regions I, Il and III [15-17).

The condition of compatibility for the equation system to have non-trivial solutions
is given as follows:

[(e 4 €2)€) + €3)]/[(€1 — €3)(6; — &3)] = ek, (10)

A similar dispersion relation has been obtained for surface polaritons by solving
macroscopic Maxwell’s equations. Here equation (10) is derived on the basis of
microscopic theory for the polarization field of relative displacements of ions without
coupling with photons. Only the electric field due to a coulombic interaction is
considered, since we confine ourselves to electron—phonon coupling in the present
work.

Equation (10) gives four branches of frequencies as functions of the 2»
wavenumber, k. We denote them by w§(£ = 1,2,3,4). Generally, the frequencies
should be obtained numerically. We will discuss them later.
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The normalized eigenvector for the mode of frequency w, can be solved as

mA(Be7r, ideF") (z>d)
Oy (k,z) = § nAg(e"* + e **, —ie** +igeF) (|2 < d} (11)
nyAg(Bye**, —ifye*?) (z < —d)
where
Br=e* e+ ) /(e &)
Ay = 26%4€, (63— 1)/ (&g - D(ey — )] (12)
Bs = 2¢ {3 — 1}/[(e; — 1) () + )]
and
My = (€3 — €eon)[wraleon — €con)/?(ex — 1)]
Ae = {k/201 + I + )))? (13)
with

=n}(1+ B})sinh(2kd) I, = inigle ™! I, = iniplem .

It will turn out later that these modes are localized in the vicinities of the interfaces
and then we call them 10 modes.

3. Electron-10-phonon interaction Hamiltonian

We now go on to derive the ¢lectron-10-phonon interaction Hamiltonian. To this end
we first quantize the polarization field of lattice vibrations.

Ry ucing a standard aquantization procedure, one can write « and E as quantum
field operators. The contribution of the 10 phonons to the relative displacement of
the ion pair at r has the following form:

1/2
u(ry=3" (_i_) %P0, (k, 2)aye + HC (14)

Y 28npw,

where aké(akf) is the Bose creation (annihilation) operator of the 10 phonon of
frequency w, and 2D wavenumber k and satisfies the commutation relations for
Bose operators. On the other hand, we have the following relations for the relative
displacement and the local field:

E'(r) = {[ne"(4r /3 + 7))/ [1 - na(dn [3+ v )]}u(r) (15)
from (2), (9) and the well known Lorentz relation

E'= (4n/3+ v,)P. (16)
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Substituting equations (14) and (15) into the free-polarization Hamiltonian

Heg = /dr —(u + wiu?) — /d LA I (17)
we can obtain the free 10-phonon field Hamiltonian
Hio= Y hwg(afean + 1. (18)
k¢

The interaction between an electron at r and a polarization field can be written
as the following well known form

- [ - P(+)dr (19)

Moreover, the polarization field associated with the displacement «(7) can be written
as

P(r) = {ne’/[1 - na(d4r /3 + ) Ju(r) (20)

from equations {2) and (16).
Putting equations (14), (19) and (20) together with equations (4), (8) and (9) and
using a Fourier transform

-7 PN ¢ ,
_— = - L eik-(p'~p) —k|z'—z]| )
=) T @

the Frohlich-like Hamiltonian for the electron—Io-phonon interaction is finally
obtained as

H,_io = Ge(k,2)e*Pay, + Hc. (22)
k&

In this equation the coupling function &, is given by the integral

Gelk,2) =iy fmdz' hun;‘e'“"‘zl—K—};— @ (k,2'). (23)
A
Completing the integral in equation (23) we have
iCVe** (2> d)
Gk, 2) = { (Cle** + Cle~*#) (2] € d) (24)
iCIIIekz (2 < ""d)

where
Cl = A [ho(1— Bie™*9) + hoBye~2 ] [k
cl= Aelhol B — e~ 28y 4 hoBye ) fk (25)
C" = A [2hgsinh(2kd) + hoBy + ke 4] [k

CW = A[2h,B sinh(2kd) + hofe" 2 + hyB3]/k
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and
hy = [rhe’[(2Sw,)]V/2. (26)

It is obvious that the coupling functions are spatially and wavenumber dependent.
The interface localization of the 10 modes can be also found from the spatial
dependence of the corresponding electron—phonon coupling. It is seen from
equation (24) that the coupling intensities of the electron with the 10 phonons have
their maxima at the interfaces » = d and 2 = —d and decrease as the electron moves
away from the interfaces. The larger the well width or the wavenumber, the more
noticeable the interface localization.

As for the wavenumber dependence, the electron—phonon coupling decays rapidly
with increasing wavenumber. Thetefore the contribution of the 10 phonons of smaller
wavenumbers to the electron—phonon coupling is dominant, ie. only the phonon
modes in the vicinity of the centre of the Brillouin zone (BZ) are important. This
is also expected in our continuum approximation. The above-mentioned properties
of 10 modes will be clearly indicated by the following numerical results for several
practical systems.

4. Analysis of special cases
Before doing the numerical computations we discuss briefly some special cases.

4.1, Large- and small-wavenumber limits

In understanding the character of the 10 modes it is worth discussing the extreme
cases of large and small k respectively.

(i) Large-wavenumber limit, ie. k — co. In this case the 10 polarization
wavelengths are much smaller than the well width and the interfaces can be considered
to be isolated from each other. So the mode frequencies become those of the
individual interfaces given by ¢, + ¢; = 0 and ¢; + ¢; = 0. Since the barrier materials
2 and 3 are different, the four branches of e 10 {fequencics U VL reduee U wo
branches at k — co. This behaviour is far from that observed in a symmetric quantum
well [11, 13].

Furthermore the electron—10-phonon coupling functions tend to zero in this limit.
This is the natural behaviour of the electron-phonon coupling for either bulk or
interface modes because of the coulombic interaction.

(it) Small-wavenumber limit, ie. k — 0. In the limit of small wavenumber, the
frequencies reduce to w; = wyy, Wy = wpy, but w, and w, are given by ¢, + ¢; = 0.
The results are again different from those in symmetric double hetcrostructures. The
coupling between two different barrier materials is considerable.

The eigenvectors and coupling functions of the modes of frequencies wpy and wy,
have the simple forms

®,(0 z)z{u/(sz)‘“](l,m 2| < d -
o 0 otherwise

G,(0,2) = ihy(2d) 207! everywhere 28)
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for the mode of wyy, ie. the TO-frequency mode, and

,(0,2) = {[1/(2.1)1/21(0, ) jzl<d -
0 otherwise
ihu(zd)uzﬂl_l z>d
“ihu(Zd)Uz??l_l z < —d

for the mode of w,, i.e. the LO-frequency mode.

It s found from equations (27) and (29) that the 10 modes for such a small-
wavevector limit are confined in the well. Moreover, the To-frequency mode is
longitudinal (P||k) while the Lo-frequency mode is transverse (P, Lk). This is
somewhat like the bulk-like slab modes in the well material. However, the 10 modes
at the 70 and LO frequencies are both accompanied by microscopic fields and coupled
with electrons either inside or outside the well.

4.2, Special systems

(i) Symmetric quantum well, Putting €, = ¢, we obtain exactly the same results as
for a symmetric quantum well. The results are the same as those given in previous
papers [10, 12].

(ii) Single heterojunction. Putting €, (or €;) equal to one, ie. supposing material 2
(or 3} to be a vacuum, we get a film on a thick substrate. This is a kind of single
heterojunction problem. In this case the implied dispersion relation for e, = 1
becomes

(&1 + &)(e; + D]/[(€) — €3)(e; — 1] = e *<, (31)

The 10 modes reduce to three branches. The corresponding changes for the
eigenvectors and coupling functions are also made at the same time. Putting d = 0
we get a single interface between 2 and 3 at z = 0. The dispersion relation is given

by
€+ ¢5=0. (32)

The results are the same as those obtained by previous authors [10].

5. Numerical results and discussion

For ease of representation we have computed numerically the dispersion relations,
cigenvectors and electron-10-mode coupling functions for several particular systems.
The results are given as follows.
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Table 1. Characteristic parameters used in the numerical calculation. Energy is measured
in meV.

GaAs®  IngsGapgsAs®  Ino.47GapssAs® Al 1sGagssAs®  AloyGagrAs®  InP?

hwio 36.25 32.24 33.54 3531 34.45 42.78
Awro 329 2900 31.49 117 32.99 37.65
€ oo 10.89 11.03 11.32 10.48 10.07 956
s [18).
b [19).
< [20]
¢ [21].
38.0 43.00
38.0 4_w, (o) ®) aly ()

38.0 o

T340 4 ] 39.00 -
eI~ % -
o
3
=

34.0

132.0 4 o

- w’

pssom ] 30.0 —— 1 31.00 .i —
2.0 40 00 20 40 00 4.0
2kd 2kd
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o

2.0
2kd
Figure 2. Phonon energies of the 10 modes as functions of the wavenumber k in
(@) a GaAs/Ing 15 Gag gs As/Alg 15 Gag g5 As single quantum well; (b} a GaAs/Alg.3Gag 7As

single heterojunction; {¢) an Ing.47Gag 53 As/InP single heterojunction. Phonon energy is
measured in meV and length in 2d,

15 [-1]
(o) 05

Figure 3.  k-components (solid line) and =z-

1 ]
00 .1 I components (dashed line) of the eigenvectors of
L2 (@) Aw; = 29.01 meV and () hwy = 32.19 meV
L rave Fae Fary mary s Rt ey P Py as functions of z/2d at 2kd = 0.01 for the system
2/ 2/2d in figure 2(a).

5.1. GaAsiInGaAs/AlGaAs single quantum well

Equation (10) has been solved numerically for a GaAs/In; ;Ga, g;As/Aly ;sGa, gsAs
single quantum well. The material parameters used in the computations are listed
in table 1. The numerical results for the phonon energies fiw, of the 10 modes as
functions of the 2p wavenumber k are plotted in figure 2(a). It is clear that there exist
four branches of the 10 phonons supported by two interfaces. In contrast to those
in a symmetric quantum well, these modes are neither symmetric nor antisymmetric.
Their frequencies do not reduce to two branches at k — oo.

Figure 3 shows the components along the k- and z-directions of the eigenvectors
whose frequencies are close to wpy and wy, respectively at & = 0.01/2d. The modes
are almost confined to the well material and again the longitudinal mode is near the
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bulk TO frequency, but the transverse mode is near the LO frequency.

The wavenumber and spatial dependences of the electron-10-phonon coupling
functions are illustrated in figure 4, (2) and (b), for z = d and k = 0.01/2d
respectively. Figure 4 shows that the coupling functions are localized in the interface
and important at the small wavenumbers in the vicinity of the centre of the BZ.

0.8 4

os

9.0 f————r J ' .
-2.5 -1.5 —05 0% 15 25
z/2d

Figure 4. Absolute values of the coupling functions for the four branches of 10 modes as
functions of (g) wavenumber k at z = d and (b) well width z at k& = 0.01 with 2d =1
and (mefiwr /2)1/2 =1 for the system in figure 2(a).

5.2, Heterojunctions

We have considered the single-heterojunction system in which a film lies on a thick
substrate. There are three branches of 10 modes in this kind of system. The numerical
results for the phonon energies of 10 modes in the GaAs/AlGaAs and InGaAs/InP
heterojunction system are shown in figure 2, (b) and (c) respectively. The frequencies
start at the values w; = wyy, wy = wy; and w; given by ¢+ 1 =0 at k£ = 0 and
then tend to the frequencies given by €, 4+ ¢; =0and ¢, + 1 = ¢ at & — oo.

Our numerical computations for the two systems show that in the vicinity of the
centre of the BZ, the eigenmodes of the frequencies close to the To and Lo frequencies
are again almost confined to the film and have an interchange of longitudinal and
transverse characteristics. Both of them couple with the electrons in the systems. The
characteristics of the curves describing the eigenvectors and coupling functions in the
heterostructures are quite similar to those in figures 3 and 4, so we do not plot them
here.

In summary we have investigated the interface optical modes in a general
double-heterojunction system on the basis of the dielectric continuum model. The
Hamiltonian for the electron-10-phonon interaction in the system was derived. It
was found that there exist four branches of 10 polarization modes coupled with
the ¢lectrons in the system. In contrast to what is found for symmetric double
heterostructures, the four branches of the 10 frequencies do not reduce to two
branches at k& -+ co. The contribution of small-wavevector phonons to the electron-
phonon coupling is dominant. In the vicinity of the centre of the BZ, the 10 modes
with the bulk TO and LO frequencies of the well material are localized inside the
well. However, the properties of these modes are far from those of bulk-like modes.
An interchange of longitudinal- and transverse-phonon characteristics corresponding
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to the TO and LO frequencies is also found theoretically for 10 modes. Both the
TO and LO phonons couple with the electrons in the system. It was demonstrated
by our theoretical calculation that the Frohlich interaction between an electron and
the 10 phonons is important for electron-phonon scattering in heterostructures. In
general the contribution of 10-mode coupling will lower the resonant frequencies. A
more detailed calcufation for polaron effects in heterostructures should be done in
order to interpret satisfactorily the experimental phenomena. The electron-10-phonon
interaction Hamiltonian derived here can be used in studying polaron problems for
heterostructures. Further work is in progress.

Finally, it is to be noted that the optical modes of a ternary mixed crystal, such as
AlGaAs etc., have two-mode character [18,22]. Only a main mode coupled strongly
with the electrons is considered in our numerical calculation. This is incomplete but
does not change the essential characteristics of the 10 modes.
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