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AbslneL Long-wavelength oplical mcdes of lattice vibrations are sludied and a Frb;hlich- 
~ k e  Hamiltonian of lhe inleraction between an electron and lhe interface oplical phonons 
is derived. Intersling properties of lhe interface optical modes and their coupling with 
electrons are found. nlhe numerical results for the dispersion relations, eigenvecton 
and mupling functions of the interface optical phonons in several practical systems 
are obtained and discussed. It is shown lhal the interface optical modes should be 
Laken into consideration in lheorelical investigations of electron-phonon scattering in 
helemstrucrurs. 

1. Introduction 

In recent years, much attention has been paid to the electron-optical-phonon 
interaction in semiconductor heterostructures [I-131. Raman scattering measuremen6 
for semiconductor quantum wells have shown that a transverse vibration occurs at 
the bulk longitudinal optical (LO) frequency, while a longitudinal mode occurs at 
the bulk transverse optical (TO) frequency [2]. The polaron effects at frequencies 
lower than the usual LO frequencies are found by cyclotron resonance (CR) and 
magnetophonon resonance (MR) observations [>SI. These phenomena are somewhat 
surprising and wrious theoretical explanations have been proposed [2,&9]. An 
interface-mode mechanism has been suggested [4,7, SI. Some authors have studied 
theoretically the properties of the electron~ptical-phonon interaction in polar 
semiconductor heterostructures such as the single heterojunction and symmetric 
double heterostructures 111-131. It is shown that the optical vibration modes can 
be strongly influenced by the presence of heterointerfaces; these give rise to the 
appearance of new modes which are localized in the vicinities of interfaces and can 
be called interface optical (IO) modes. A detailed study of IO phonons and their 
coupling with electrons in various systems of heterostructures is necessary. 

In this paper a general situation, the asymmetric quantum well, is considered. 
The optical modes of lattice vibrations are first determined within the framework of 
the dielectric continuum model [13-161 and then an implied dispersion relation and 
the eigenvectors for the IO modes are given in section 2. A Frohlich-like Hamiltonian 
describing the electron-ro-phonon interaction in the system is derived in section 3. 
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The properties of these modes and corresponding electron-phonon coupling are 
qualitatively analysed in section 4. In some special cases our results can be reduced 
to those for symmetric double heterostructures [Il, 131, the single heterojunction [12] 
and an isolated slab (171 etc. Numerical calculations for several practical systems are 
camed out and discussed in section 5. It turns out that the effects of interface modes 
may contribute to electron-phonon scattering in heterostructures. 

2. Interface optical modes 

We consider a system whose geometry is shown in figure 1. The well material 1 lies in 
the region I (121 < d )  and the barrier materials 2 and 3 fill up the spaces I1 ( z  > d )  
and I11 ( z  < - d )  respectively. A similar system has been considered in studying 
the surface polaritons, the modes of coupled photons and dipole excitations of the 
solid [lo]. We now start from a microscopic consideration of the optical vibrations 
of lattices in order to deal with the electron-phonon interaction problem. In the 
dielectric continuum model, the relative displacement u ( r , t )  of the ion pair at r in 
a diatomic polar crystal satisfies the following equation of motion: 

p i i ( r ,  t )  = - p w & ( ~ , t )  + e * E ' ( r , t )  (1) 

where p is the reduced mass of the ion pairs, wo is the frequency associated with the 
short-range force between the ions and e' is the effective charge of the ions. E'(? ,  t )  
is the local electric field related to the polarization field P(T,~) by 

P ( r , t )  = ne*u(r,t) + n a E l ( r , t )  (2) 

where R and 01 are respectively the number of WignerSeitz cells per unit volume 
and the electric polarizability per cell. On the bases of dipolar-field and Lorentz 
local-field theories, we have the following integral equations for the polarization field 
in the region X [13,16, 171: 

In equation (3) X,X' = I, I1 or I11 label the regions and l , j  = z,y or z. The 
integral is over the region A'. T,, is the dipolar tensor [16,17]. 7: is determined by 

(5) A 7," = -/b +4n. 

Carrying out a two-dimensional (ZD) Fourier transformation one c a n  obtain (131 

where 

K = (k,O,iksgn(z- z')). (7) 
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k is the 2D wavenumber in the I - y plane. Here the z-axis has been chosen to lie 
along k. The coefficient 7: can also be related to the macroscopic parameters of the 
materials by the equation 

y: = 4 r / ( E A  - 1) (8) 

which is implied in the derivation from equations (2) to (3). Here the dielectric 
mnstant e A  is a function of the frequency and is given by 

EA(W) =.,,cat, - Wz)/(w+A -J). (9) 

In equation (9), emA and ~ ~ ~ ( 4 ~ )  are respectively the optical dielectric constant 
and the bulk U)- (TO-) phonon frequency of the material A( X = 1,2,3) .  

Equations (6) and (7) can be discussed for the situations in which 7: is equal to 
zero or otherwise. For the cases of y: = 0 and y: = 0, we get confined bulk-like 
modes, TO and Lo modes of the material A, respectively. These are simply the results 
obtained by previous authors [IS-171 for a dielectric slab. We do not plan to discuss 
them here. 

We focus our attention on the case of y: # 0. In this case we get extra modes. 
In solving equations (6) and (7), the convergence of the solutions at z -+ +03 is 
applied and the boundaly conditions at the interfaces are ‘buried’ in the system of 
integral equations which couple the different regions I, I1 and I11 115-17). 

The condition of compatibility for the equation system to have non-trivial solutions 
is given as follows: 

[ ( e ,  + + t3)1/[(et - e2)(e1 - e d 1  = e-4kd. (10) 

A similar dispersion relation has been obtained for surface polaritons by solving 
macroscopic Maxwell’s equations. Here equation (10) is derived on the basis of 
microscopic theory for the polarization field of relative displacements of ions without 
coupling with photons. Only the electric field due to a coulombic interaction is 
considered, since we confine ourselves to electron-phonon coupling in the present 
work 

Equation (10) gives four branches of frequencies as functions of the 2~ 
wavenumber, k. We denote them by at(€ = 1,2 ,3 ,4) .  Generally, the frequencies 
should be obtained numerically. We will discuss them later. 
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The normalized eigenvector for the mode of frequency we can be solved as 

q2Ae(P2e-bz, i132e-kz) ( 2  > d )  

qIAc(ebz + -iek* + iPle-k") (121 < d )  (11) 

v3Ae(B3ekz2, -iP3ek*) ( Z  < - d )  

I - 1 2 2 -2kd  I, = q:(1+ #)sinh(2kd) I 2 - - gl2Pze -2kd  3 -  ?q3P3e . 
It will turn out later that these modes are localized in the vicinities of the interfaces 
and then we call them IO modes. 

3. Electron-lo-phonon interaction Hamiltonian 

We now go on to derive the electron-lo-phonon interaction Hamiltonian. 'Ib this end 
we first quantize the polarization field of lattice vibrations. 

askg ?. gic.l& yfitk?.tifin :rfirpril!rp., e".? r?! -itp 1. acd i: as niiantum n ~ ~~~~~ ~ ~~~ 

field operators. The contribution of the IO phonons to the relative displacement of 
the ion pair at r has the following form: 

where a&(ake)  is the Bose creation (annihilation) operator of the 10 phonon of 
frequency me and ZD wavenumber k and satisfies the commutation relations for 
Bose operators. On the other hand, we have the following relations for the relative 
displacement and the local field: 

E ' ( T )  = {[ne*(47r/3 + -rb)]/[l - n a ( 4 ~ / 3  + ~ ~ ) l ) u ( r )  

E' = (4rr/3 + r k ) P .  

(15) 

from (2). (9) and the well known Larentz relation 

(16) 
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Substituting equations (14) and (15) into the free-polarization Hamiltonian 

we can obtain the free io-phonon field Hamiltonian 

The interaction between an electron at T and a polarization field can be written 
as the following well known form 

- e - .  P(r') dr '  
Hep - (r' - ~ ( 3  

Moreover, the polarization field associated with the displacement U ( T )  can be written 
as 

P ( v )  = {ne'/[l- n447r/3 + rfi)lM~) (20) 

from equations (2) and (16). 

using a Fburier transform 
Putting equations (14), (19) and (20) together with equations (4), (8) and (9) and 

the Frohlich-like Hamiltonian for the electron-Io-phonon interaction is finally 
obtained as 

He- , ,  = G ( ( k ,  z)e'k'Pak( + HC. 
k< 

In this equation the coupling function Gc( is given by the integral 

Completing the integral in equation (23) we have 

iCIIe-k* (= > d )  
i ( C ~ e k z + C ~ e - k Z !  ( I z l S d )  
iC"1 ek 2 ( Z  < -d)  

where 
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and 

h,  = [7riie2/(2Swc)]'/2. 

It is obvious that the coupling functions are spatially and wavenumber dependent. 
The interface localization of the IO modes can be also found from the spatial 
dependence of the corresponding electron-phonon coupling. It is seen from 
equation (24) that the coupling intensities of the electron with the IO phonons have 
their maxima at the interfaces z = d and z = -d and decrease as the electron moves 
away from the interfaces. The larger the well width or the wavenumber, the more 
noticeable the interface localization. 

As for the wavenumber dependence, the electron-phonon coupling decays rapidly 
with increasing wavenumber. Therefore the contribution of the lo phonons of smaller 
wavenumbers to the electron-phonon coupling is dominant, ie. only the phonon 
modes in the vicinity of the centre of the Brillouin zone (BZ) are important. ?his 
is also expected in our continuum approximation. The above-mentioned properties 
of 10 modes will be clearly indicated by the following numerical results for several 
practical systems. 

4. Analysis of special cases 

Before doing the numerical computations we discuss briefly some special cases. 

4.1. Large- and small-waimumber limits 

In understanding the character of the 10 modes it is worth discussing the extreme 
cases of large and small k respectively. 

(i) Large-wavenumber limit, i e .  k i M. In this case the 10 polarization 
wavelengths are much smaller than the well width and the interfaces can be considered 
to be isolated from each other. So the mode frequencies become those of the 
individual interfaces given by el  + e2 = 0 and e l  + t3 = 0. Since the barrier materials 
2 and 3 are uiiiereni, ~ht: Euur branchu u i  tic iu  irequeiiLic:s tiu nut i c t iuw tu iwu 
branches at k - CO. This behaviour is far from that observed in a symmetric quantum 
well [ l l ,  131. 

Furthermore the electron-lo-phonon coupling functions tend to zero in this limit. 
This is the natural behaviour of the electron-phonon coupling for either bulk or 
interface modes because of the coulombic interaction. 

(ii) Small-wavenumber limit, i e .  k -, 0. In the limit of small wavenumber, the 
frequencies reduce to w, = w,, w2 = wLI, hut w3 and w4 are given by t2 + t3 = 0. 
The results are again different from those in symmetric double heterostructures. The 
coupling between two different barrier materials is considerable. 

The eigenvectors and coupling functions of the modes of frequencies w, and wL1 
have the simple forms 
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for the mode of w,, i.e. the To-frequency mode, and 

(29) [1/(2d)"'](O, -i) J L J  < d 
0 otherwise 

for the mode of wL1. ie. the to-frequency mode. 
It is found from equations (27) and (29) that the 10 modes for such a small- 

wavevector limit are confined in the well. Moreover, the To-frequency mode is 
longitudinal (P ,J lk )  while the Lo-frequency mode is transverse ( P , l k ) .  This is 
somewhat like the bulk-like slab modes in the well material. However, the IO modes 
at the m and w tiequencies are both accompanied by microscopic fields and coupled 
with electrons either inside or outside the well. 

4.2. Special qsfems 

(i) Symmetric quanrunt well. Putting t2 = e3 we obtain exactly the same results as 
for a symmetric quantnm well. The results are the same as those given in previous 
papers 110, 121. 

(ii) Single hezerojunction. Putting c2 (or t3) equal to one, i.e. supposing material 2 
(or 3) to be a vacuum, we get a film on a thick substrate. This is a kind of single 
heterojunction problem. In this case the implied dispersion relation for = 1 
becomes 

(31) 
4kd 

( (€1  + % ) ( e l  + 1)1/[(~1 - a t ,  - 111 =e-  ' 

The 10 modes reduce to three branches. The corresponding changes for the 
eigenvectors and coupling functions are also made at the same time. Putting d = 0 
we get a single interface between 2 and 3 at z = 0. The dispersion relation is given 
bY 

€' + E j  = 0. (32) 

7he results are the Same as those obtained by previous authors [lo]. 

5. Numerical results and discussion 

For ease of representation we have computed numerically the dispersion relations, 
eigenvectors and electron-IO-mode coupling functions for several particular systems. 
?he results are given as follows. 
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'hbk 1. Characlerislic parameters used in the numerical alculalion. Energy is measured 
in meV 

G h a  InQ.15GaQ.85hb InQ.47GaQ.S3hC &15GaQ.8Sha Ab3GaQ,7&' h P d  

h q a  36.25 32.24 33.54 35.31 34.45 42.78 
hum 33.29 29.00 31.49 33.17 32.99 37.65 ~ ~~ ._ 
cm 10.89 11.03 11.32 10.48 10.07 9.56 

[MI. 
b 1191. 

32.0 
F 11 39.00 

35.w 
0 2  

3t.w 
9 4.0 0.0 2.0 4.0 

2kd 

Figure t Phonon energies of the io modes as functions of the wavenumber k in 
(a) a G ~ ~ " ~ , , ~ G ~ ~ , ~ ~ A I Q , ~ ~ G ~ ~ , ~ ~  single quantum well; (6) a GaAslAla,zGa~.7As 
single heterojunction; (c) an In~ .47Ga~ ,~ ,As f lnP  single heterojunction. Phonon energy is 
measured in meV and length in 2d. 

Figure 3. k -mmpnents  (solid line) and z- 
mmponents (dashed line) of the eigenvectors of 
(0) Rwl = 29.01 meV and (b) hwz = 32.19 meV 
as functions of r/2d at 2kd = 0.01 for the system 

1 

"I:-.,,,,- -1 , , 1;; , ,b ,1, 
-, -,.a -03 

- 3  -.I - 3  
2/26 z/2d in figure 2(a). 

5.1. GaAslInGaAslAlGaAs single quantum well 

Equation (10) has been solved numerically for a GaAs~no.l,Ga,,,sAs/Al,,,SGa,.,SAs 
single quantum well. The material parameters used in the computations are listed 
in table 1. The numerical results for the phonon energies T u c  of the IO modes as 
functions of the 2~ wavenumber k are plotted in figure 2(u). It is clear that there exist 
four branches of the IO phonons supported by hvo interfaces. In contrast to those 
in a symmetric quantum well, these modes are neither symmetric nor antisymmetric. 
Their frequencies do not reduce to  two branches at k + ca. 

Figure 3 shows the components along the I C -  and zdirections of the eigenvectors 
whose frequencies are close to w, and wLI respectively at k = 0.01/2d. The modes 
are almost confined to the well material and again the longitudinal mode is near the 
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bulk TO Frequency, but the transverse mode is near the LIJ frequency. 
The wavenumber and spatial dependences of the electron-lo-phonon coupling 

functions are illustrated in figure 4, (a )  and (b), for z = d and k = 0.01/2d 
respectively. Figure 4 shows that the coupling functions are localized in the interface 
and important at the Small wavenumbers in the vicinity of the e n t r e  of the BZ 

12.0, , 1.2, I 

Figure 4 Absolute values of the coupling tunclions for lhe four branches of IO modes as 
functions of (a) wavenumber C a1 z = d and (b) well widlh L at I;  = 0.01 with Zd = 1 
and ( f f ~ * i i y l / Z ) ~ ”  = 1 for the V l e m  in figure Z(0). 

5.2. Heierojunciions 

We have considered the single-heterajunction system in which a film lies on a thick 
substrate. There are three branches of IO modes in this kind of system. The numerical 
results for the phonon energies of 10 modes in the GaAs/AIGaAs and InGaAs/InP 
heterojunctiou system are shown in figure 7, (b) and (c)  respectively. The frequencies 
start at the values w, = w,, w2 = wLI and w3 given by c3 + 1 = 0 at k = 0 and 
then tend to the frequencies given by t, + c3 = 0 and t, + I = 0 a t  IC - m. 

Our numerical computations for the two systems show that in the vicinity of the 
centre of the BZ, the eigenmodes of the frequencies close to the TO and L o  frequencies 
are again almost confined to the film and have an interchange of longitudinal and 
transverse characteristics. Both of them couple with the electrons in the systems. The 
characteristics of the curves describing the eigenvectors and coupling functions in the 
heterostructures are quite similar to those in figures 3 and 4, so we do not plot them 
here. 

In summary we. have investigated the interface optical modes in a general 
double-heterojunction system on the basis of the dielectric continuum model. The 
Hamiltonian for the electron-lo-phonon interaction in the system was derived. It 
was found that there exist four branches of Io polarization modes coupled with 
the electrons in the system. In contrast to what is found for symmetric double 
heterostructures, the four branches of the IO frequencies do not reduce to two 
branches at k -+ ca. The contribution of small-wavevector phonons to the electron- 
phonon coupling is dominant. In the vicinity of the centre of the 82, the 10 modes 
with the bulk TO and LO frequencies of the well material are localized inside the 
well. However, the properties of these modes are far from those of bulk-like modes. 
An interchange of longitudinal- and transverse-phonon characteristics corresponding 
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to the TO and LO frequencies is also found theoretically for IO modes. Both the 
TO and u3 phonons couple with the electrons in the system. It was demonstrated 
by our theoretical calculation that the Frohlich interaction between an electron and 
the IO phonons is important for electron-phonon scattering in heterostructures. In 
general the contribution of lo-mode coupling will lower the resonant frequencies. A 
more detailed calculation for polaron effects in heterostructures should be done in 
order to interpret satisfactorily the experimental phenomena. The electron-lo-phonon 
interaction Hamiltonian derived here can be used in studying polaron problems for 
heterostructures. Further work is in progress. 

Finally, it is to be noted that the optical modes of a ternary mixed crystal, such as 
AlGaAs etc., have two-mode character [l8,22]. Only a main mode coupled strongly 
with the electrons is considered in our numerical calculation. This is incomplete but 
does not change the essential characteristics of the IO modes. 
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